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Eighth-Order Methods for Elastic Scattering 
Phase Shifts 
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Two new hybrid eighth-algebraic-order two-step methods with phase lag of order 
12 and 14 are developed for computing elastic scattering phase shifts of the one- 
dimensional SchrSdinger equation. Based on these new methods we obtain a new 
variable-step procedure for the numerical integration of the SchrSdinger equation. 
Numerical results obtained for the integration of the phase shift problem for the 
well-known case of the Lennard-Jones potential show that these new methods 
are better than other finite-difference methods. 

1. I N T R O D U C T I O N  

The one-dimensional  Schr6dinger equation has the form 

y"(r) + f ( r ) y ( r )  = 0 (1) 

where 0 --< r < co a n d f ( r )  = E - l(l + 1)It  2 - V(r). We call the term l(l 
+ 1)lr z the centr i fugal  potent ia l  and the function V(r) the potent ial ,  where 
V(r) --* 0 as r --~ co. According to the sign o f  the energy E there are two main 
categories o f  problems for (1) [for details see Simos and Tougelidis (1996)]. 

The numerical solution of  the Schr0dinger equation is needed in many 
areas o f  nuclear physics, physical chemistry, theoretical physics, and chemis-  
try (Cooley, 1961; Blatt, 1967; Herzberg, 1950). 

There has been much activity in the area o f  the solution o f  the one- 
dimensional Schr6dinger equation (1). The result o f  this activity has been 
the development  o f  a great number  o f  methods. The most  important character- 
istics o f  an efficient method for the solution o f  problem (1) are accuracy 
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and computational efficiency. The development of methods with the above- 
mentioned characteristics is an open problem. 

One of the most important properties for the numerical solution of 
the general second-order differential equations with periodic solution is the 
algebraic order of the method. Another important new insight is the phase  
lag, first introduced by Bruca and Nigro (1980). The most widely used 
technique for the numerical integration of (1) is Numerov's  method,  with 
interval of periodicity (0, 6) and phase lag of order four. Many authors 
(Chawla and Rao, 1984, 1986, 1987; Simos, 1992a,b; Coleman, 1989; van 
der Houwen and Sommeijer, 1987; Thomas, 1984; Simos and Tougelidis, 
1996) have developed methods with minimal phase lag for the solution of 
general second-order differential equations with periodic solutions. All these 
methods have algebraic orders of four and six. 

The purpose of this paper is to introduce two explicit eighth-algebraic- 
order methods with phase lag of order 12 and 14 for the numerical solution 
of the phase-shift problem of the one-dimensional Schr6dinger equation. The 
new methods are very simple because they are explicit. The phase shifts 
calculated by these methods are more accurate than those given by Riehl et 
aL (1974) and Hepburn and Le Roy (1978). We introduce a new error control 
procedure, which is based on the property of the phase lag. Based on these 
new methods, we introduce a new variable-step method for the solution of 
(1). The numerical results given by this new variable-step method are better 
than those of the best-known variable-step method of Raptis and Cash (1985). 

2. PHASE-LAG ANALYSIS 

We investigate the numerical integration of the problem 

y" = f ( r ,  y), y(ro) = Yo, y'(ro) = y~ (2) 

To examine the stability properties of the methods for solving the initial- 
value problem (2), Lambert and Watson (1976) introduced the scalar test 
equation 

y" = - w 2 y  (3) 

and the interval o f  periodicity. When we apply a symmetric two-step method 
to the scalar test equation (3) we obtain a difference equation of the form 

Yn+l - 2Q(s)y.  + Yn-I : 0 (4) 

where s = wh, h is the step length, Q(s) = B(s)lA(s), where B(s) and A(s) 
are polynomials in s, and y. is the computed approximation to y(nh),  n = O, 
1, 2 . . . . .  For explicit methods A(s) = 1. 
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The characteristic equation associated with (4) is 

z 2 - 2Q(s)z  + 1 = 0 (5) 

We have the following definitions. 

Definit ion 1 (Thomas, 1984). The method (4) with the characteristic 
equation (5) is unconditionally stable if I z~ I -< 1 and I z21 -< 1 for all values 
of wh. 

Definit ion 2. Following Lambert and Watson (1976), we say that the 
numerical method (4) has an interval of periodicity (0, HE) if for all s 2 
(0, HE), Zl and Z2 satisfy 

z~ = d ~ and z2 = e -iO(s) (6) 

where 0(s) is a real function of s. 

Definit ion 3 (Lambert and Watson, 1976). The method (4) is P-stable  
if its interval o f  periodici ty  is (0, oo). 

Based on the above we have the following theorems [for the proofs see 
Simos and Tougelidis (1996)]. 

Theorem 1. A method which has the characteristic equation (5) has an 
interval of periodicity (0, H 2) if for all s 2 ~ (0, H2), IQ(s) l < 1. 

Theorem 2. About the method which has an interval of periodicity (0, 
Ho 2) we can write 

cos[0(s)] = Q(s), where s 2 e (0, H E) (7) 

Definit ion 4 (van der Houwen and Sommeijer, 1987). For any method 
corresponding to the characteristic equation (5) the quantity 

t = s - cos-I[B(s)IA(s)]  (8) 

is called the dispersion or the phase error or the phase lag of the method. If 
t = O(s q+l) as s ---> 0, the order of the phase lag is q. 

Based on the above definition, Coleman (1989) arrived at the following 
remark. If the order of dispersion is 2r, then we have 

t = cs 2r+l + O(S 2r+3) ~ COS(S) - -  Q(s) = cos(s) - cos(s - t) 

-~- CS 2r+2 + O(s  2r+4) (9) 

where t is the phase  lag o f  the method. 
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3.  T H E  N E W  E X P L I C I T  E I G H T H - O R D E R  M E T H O D S  

Consider  the family o f  two-step formulas  Ms(ai ,  i = 1(1)3) given by  

Yn+l 

L+I  

L§ 
Yn+ 1/2 

n+ 1/2 

,Yn- 1/2 

n -  l12 

Yn+l 

f.+l 

~n+ 1/2 

= 2y~ - y . _ ,  + h2L 

= f(r~+b Y~+l) (10) 

h 2 - 
= 2 y n - - Y n - I  + ' i ' ~ ( f n + l  + 10fn + f n - I )  

= f(r,,§ L+I) (11) 

1 h 2 = 
= ~ (5~,,+1 + 146y,, - 47y, , -0 + ~ (-59f,,+t + 1438f,, + 253f,,-0 

= f(Fn+112, Yn+112) (12) 

1 h 2 = 
= ~ (3~n+l -4- 20yn + 29y,,-1) + ~ (41f,,+~ -- 682fn -- 271f,,-,) 

= f(r.-112, Y . - I n )  (13) 

h 2 = 
= 2Yn --  Y n - I  + "60 [fn+l q" 26fn + f n - - I  + 16(jfn+112 "t-)n--112)] 

= f(r~+b Yn+l) (14) 

1 
= " i ~  (--25y,,+~ + 205y,, - 15y,,_~ -- 37y,,-2) 

h 2 . 
+ 1 - ~  (23f,,+t + 761f. + 509f,,-t + 27f.-z) (15) 

-- 1 
Y,,-112 = 1 -~  [37(y~+1 + Yn-2) + 27(y,, + Y,,-O] 

h z 
+ [-9(].+1 + A - 2 )  - 171(f,, + f , , - l ) l  (16) 

512 
= 
A -  112 = f ( r . +  112, Yn-112) 

1 
Yn+l/4 = ~ [605~7n+1 + 4070yn - 579yn-t - 160(yn+u2 - Yn-u2)] 

h 2 
- -  [113f, ,+t-  1390f , , -  103f,,-i + 1944( f , ,+ l e -  f,,-l/2)] (17) 

49152 

fn+l/2 = f ( r . + v 2 ,  ~n+U2) 
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fn+ll4 = f(rn+l/4, Yn+l/4) 

1 
Yn-l/4 = -409----6 [579]n+t - 4070yn -- 605y~-1 -- 160(y~+lrZ -- Y~-I/2)] 

h 2 
+ ~ [103f~+l + 1390fn - l l 3 f . - i  + 1944(f.+1/2 - fn-t/2)] (18) 

fn--l/4 = f(rn-ll4, Yn-l/4) 

~i) = y .  _ aih2[yn+l _ 90fn + Y . - t  - 20(~n+1/2 + ~n-l /2)  

+ 64(~n+I/4 q- ~n--I/4)] 

jad) = f(rn, yen')), i = 1(1)3 (19) 

Then for n --> 1 we derive the following two-parameter family Ma(ai, i = 
1(1)3) of  explicit methods of order eight: 

h 2 = 
- 2y~ + y ._ l  = ~ [47(fn+~ + f • -0  + 1328(fn+1/2 + Y.+I fn-l,2) 

- 1024(f~+,/4 + f.-~/4) + 3 0 7 8 ~  3)] (20) 

The  local truncation error (LTE) o f  the method is g iven by 

hlO 
LTE = 951035904000 [126945y<nt~ + (1512529200a3 + 1010945)y<~S)F~ 

- lO01952y<.6)F.F" - 636160y~.4)F'F2n] + O(h 12) (21) 

where  F~ = (aflOy)., F "  = (dFIdr) . ,  y~2) = (d2yldr2) . ,  y<4) = (d4yldr4)n, 
y(n 6) = (d6yldr6)n ' y~8) = (dSyldr8)~, and y~lO) = (dlOyldrlO)n" 

We apply this method to the scalar test equat ion (3). Setting s = wh,  
we obtain the di f ference equat ion  (4) and the corresponding characteristic 
equation (5) with A(s )  = 1 and 

l s 2  1 s 4 _  1 s6 1 s8 
B(s) = 1 - ~  + ~  ~ + 40--0-~ 

+ 900315a3 + 3332 s l  0 

1132185600 

52 - 89775a3 - 108037800aza3 ,12 
+ s 

1509580800 

+ 19aa(5054400ala2 + 4 2 0 0 a 2 -  1) sl 4 

14909440 

+ 171a2a3(1 - 4200al)  16 7695ala2a3 S S 18 
1490944 745472 
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For the proof of the following theorem see Simos and Tougelidis (1996). 

Theorem 3. The phase lag of a symmetric two-step method with charac- 
teristic equation (5) is the leading term in the expansion of 

[cos(s) - a(s)]ls 2, Q(s) =B(s)lA(s) (22) 

Theorem 4. The family of methods Ms(a1, a2, a3) produces methods with 
phase lag of order 12 and 14 for the values of  a~, a2, and a 3 given in Table 
I. The intervals of periodicity of these methods are given in Table I. 

Proof. Considering (22), we have that 

[cos(s) - Q(s)]ls 2 

= s8 900315a3 + 3644 

1132185600 

1612 - 2962575a3 - 3565247400a2a3 
+ s 1o 

49816166400 

16 - 1777545a3 + 7465689000a2a3 + 8984423448000aia2a3 + s 12 
1394852659200 

1 - 2399685750a2a3 + lO078680150000ala2a3 
20922789888000 

S14 

1 - 66087345555000ala2a3 
+ s 16 (23) 

6402373705728000 

To have maximal phase-lag order it follows from (23) that we must 
have the following system of equations: 

900315a3 + 3644 

1612 - 2962575a3 - 3565247400a2a3 (24) 

16 - 1777545a3 + 7465689000a2a3 + 8984423448000ata2a3 

Based on this system and on (23) we have Table I. 

T a b l e  I .  C h a r a c t e r i s t i c s  o f  the  N e w  M e t h o d s  

M e t h o d  1 M e t h o d  2 

a l  0 - 1 2 2 1 5 8 4 2 3 / 1 1 7 3 1 2 7 0 8 2 4 0  

a 2 . - 3 6 4 4 / 9 0 0 3 1 5  - 1 9 8 9 4 3 1 2 1 1 0 4 2 2 6 0  

a 3 - 198943 /211  0 4 2 2 6 0  - 3 6 4 4 1 9 0 0 3 1 5  
P h a s e  lag  2 .6  X 10 - s  s 14 2 .4  X 10 -9  s 16 

In te rva l  o f  pe r iod i c i t y  (0,  12 .9394)  (0, 12 .6756)  
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To prove the property of nonempty interval of periodicity, we note first 
that considering (5), it is clear that the roots z~,2 will be distinct, complex 
conjugate, and each of modulus one for s 2 ~ (0, H0) provided I Q(s) l < 1 
for all s 2 e (0, Ho). Considering (5) and Theorem 1 and for ai, i = 1(1)3, 
given in Table I, we have the intervals of periodicity mentioned in the 
same table. �9 

4. NUMERICAL ILLUSTRATION 

The methods developed in Section 3 can be applied in both the open- 
channel problem and the bound-state problem. We investigate the open- 
channel problem, i.e., the case E = k 2 > 0. 

In this case, in general, the potential function V(r)  dies away much faster 
than l(l + 1)/r 2, so the latter is the predominant term. Then equation (1) 
effectively reduces to y"(r)  + (k 2 - l(l + 1)lr2)y(r)  = 0 for large r. It is 
well known that equation (1) has two linearly independent solutions krj l(kr)  
and krnl(kr),  where j t (kr)  and nl(kr) are the spherical Bessel and Neumann 
functions, respectively. Thus the asymptotic solution of (1) (i.e., for r ---> oo) 
has the form 

y(r)  ~ Akr j l (kr )  - Bkrnl (kr)  

-~ A D [ s i n ( k r  - hr /2)  + tan ~t cos(kr - /'rr/2)] (25) 

where ~l is the real scattering phase shift of the lth partial wave induced by 
the potential V(r). T h e  value of ~t can be computed using the formula 

y(rb)S(rQ) - y(ra)S(rb) 
tan ~t y(ra)C(rb ) _ y(rb)C(ra ) (26) 

where ra and rb are two distinct points in the asymptotic region, S(r)  = 
krj t(kr)  and C(r)  = - k r n l ( k r ) .  

The term hr/2  in (25) iS conventional. The reason for inserting it is 
that, with this definition, all phase shifts vanish when the potential function 
vanishes itself. 

Based on (25) and (26), we have that the normalization factor D is given 
by [for details see Simos (1990)] 

y(ra) 
D ~ kra[COS(~l ) S(ra ) + ( _  1) / sin(St) C(ra)] (27) 

In this section we present some numerical results to illustrate the perfor- 
mance of our methods on a problem of practical interest. We consider the 
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Table IL Phase Shifts Computed for k = I0 and l = 0(10)50 Using the Methods of (a) 
Riehl et al. (1974) and (b) Hepburn and Le Roy (1978) and the Present Method with Phase 

Lag of Order (c) 12 and (d) 14 

l Method a Method b Method c Method d 

0 - 0.4311 - 0.4310043 - 0.431004370 - 0.43100438189 
10 0.3778 0.3779001 0.37789991 0.3779001 04 1 
20 0.4659 0.4659448 0 . 4 6 5 9 4 4 7 0  0.4659446969 
30 0.0566 0.0566391 0 . 0 5 6 6 3 8 7 0  0.0566390356 
40 0.0135 0.0135798 0 . 0 1 3 5 7 9 0 3  0.0135796944 
50 0.0045 0.0044945 0 . 0 0 4 4 9 4 4 7  0.0044944736 

numerical integration of  the Schr6dinger equation (1) in the well-known case 
where the potential V(r) is the Lennard-Jones potential: 

V(r) = 500(l / r  12 - 1/r 6) (28) 

In Table II we present the calculated phase shifts of  the Schr6dinger 
equation (1) for k = 10 and for I = 0(10)50 using the present methods, the 
method of Riehl et al. (1974), and the method of Hepburn and Le Roy (1978). 
From the results presented it is obvious that our new methods are much more 
accurate than the other methods. 

4.1. Error Estimation 

For the integration of systems of initial-value problems, several methods 
have been proposed for the estimation of  the local truncation error (LTE) 
[see, for example, Shampine et al. (1976) and references therein]. Here we 
will introduce a new error control procedure. 

In this paper we base our local error estimation technique on an embedded 
pair of  integration methods and on the fact that when the local phase-lag 
error is of  higher order, then the approximation of  the solution for the problems 
with a periodic solution is better. 

We denote the solution obtained with higher order phase lag as Y~+I and 
the solution obtained with lower order phase lag as Y~+I; we have the follow- 
ing definition. 

Definition 5. We define the local phase-lag error estimate in the lower 
order solution ~ + l  by the quantity 

LPLE = lye+ 1 - Y~+ 1 I (29) 

Under the assumption that h is sufficiently small, the local phase-lag error 
in Y~,+l can be neglected compared with that in y,L+l. 
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We assume that the solution y~+ 1 is obtained using the family of methods 
with phase lag of order 14 described above and the solution ~+t  is obtained 
using the family of methods with phase lag of order 12 described above. 

If the local phase-lag error of acc  is requested and the step size of the 
integration used for the nth step length is h~, the estimated step size for the 
(n + 1)th step which would give a local phase-lag error of acc  must be 

/ \ l lq 
. i a c e  i 

where q is the order of the local phase-lag error. 
However, for ease of programming we have restricted all step changes 

to halving and doubling. Thus, based on the procedure developed in Raptis 
and Cash (1985) for the local phase-lag error, the step control procedure 
which we actually used is 

If LPLE < acc,  hn.l = 2hn 

If lOOacc > LPLE ----- acc,  h,,+l = h,, 

h, 
If LPLE --> lOOacc, hn§ = -~  

(31) 

and repeat the step (32) 

We note that the local phase-lag error estimate is in the lower order 
solution yL+ 1. However, if this error estimate is acceptable, i.e., less than acc,  

we adopt the widely used procedure of performing local extrapolation. Thus, 
although we are actually controlling an estimate of the local error in lower 
order solution ~+~, it is the higher order solution ynH+l which we actually 
accept at each point. 

We investigate now the computational cost of the application of the new 
embedded method. The new embedded method is a variable-step method. 
So, for comparison purposes we could apply only variable-step methods, 
such as those developed by the Raptis and Cash (1985). 

In Table III we present the phase shifts for k = 10 and for acc  = 

10 -6 using the variable-step algorithm described above and the variable-step 
method presented in Raptis and Cash (1985). In all cases the embedded 
variable-step method developed in this paper is more accurate and requires 
less computation time. 

All computations were carried out on a PC-AT 80486 using double- 
precision arithmetic of 16-digit accuracy. 

5. CONCLUSION 

It is obvious that the new method and the new variable-step procedure 
are more efficient than other well-known methods in the literature. 
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Table  IH. Computed Phase Shifts and Real Time of Computation for Variable-Step 
Method of Raptis and Cash (1985) and for Our New Embedded Variable-Step Method 

Method of Reptis and Cash (1995) New embedded variable-step method 

Real time of Real time of 
Phase shift computation Phase shift computation 

0 
1 

2 
3 
4 
5 
6 
7 
8 
9 

10 

-0.4311 0.330 -0.43100438189 0.045 
1.0449 0.330 1.04500892188 0.045 
0.7158 0.330 -0.71580734152 0.045 
0.5687 0.340 0.56880699288 0.045 

- 1.3858 0.340 - 1.38576629936 0.045 
- 0.2984 0.340 - 0.29834219581 0.045 

0.6867 0.340 0.68682979399 0.045 
1.5662 0.340 1.56630306556 0.045 

-0.8060 0.330 -0.80593975405 0.040 
-0.1525 0.330 -0.15240773446 0.040 
-0.3778 0.335 0.3779001041 0.040 
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