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Eighth-Order Methods for Elastic Scattering
Phase Shifts

T. E. Simos'?

Received September 9, 1996

Two new hybrid eighth-algebraic-order two-step methods with phase lag of order
12 and 14 are developed for computing elastic scattering phase shifts of the one-
dimensional Schrodinger equation. Based on these new methods we obtain a new
variable-step procedure for the numerical integration of the Schrodinger equation.
Numerical results obtained for the integration of the phase shift problem for the
well-known case of the Lennard-Jones potential show that these new methods
are better than other finite-difference methods.

1. INTRODUCTION

The one-dimensional Schrédinger equation has the form

Y@+ fiyn =0 1)

where 0 < r < o and f(r) = E — I(I + D/r? — V(r). We call the term I(
+ 1)/r? the centrifugal potential and the function V(r) the potential, where
V(r) = 0 as r = %, According to the sign of the energy E there are two main
categories of problems for (1) [for details see Simos and Tougelidis (1996)].

The numerical solution of the Schrédinger equation is needed in many
areas of nuclear physics, physical chemistry, theoretical physics, and chemis-
try (Cooley, 1961; Blatt, 1967; Herzberg, 1950).

There has been much activity in the area of the solution of the one-
dimensional Schrddinger equation (1). The result of this activity has been
the development of a great number of methods. The most important character-
istics of an efficient method for the solution of problem (1) are accuracy
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and computational efficiency. The development of methods with the above-
mentioned characteristics is an open problem.

One of the most important properties for the numerical solution of
the general second-order differential equations with periodic solution is the
algebraic order of the method. Another important new insight is the phase
lag, first introduced by Bruca and Nigro (1980). The most widely used
technique for the numerical integration of (1) is Numerov’s method, with
interval of periodicity (0, 6) and phase lag of order four. Many authors
(Chawla and Rao, 1984, 1986, 1987; Simos, 1992a,b; Coleman, 1989; van
der Houwen and Sommeijer, 1987; Thomas, 1984; Simos and Tougelidis,
1996) have developed methods with minimal phase lag for the solution of
general second-order differential equations with periodic solutions. All these
methods have algebraic orders of four and six.

The purpose of this paper is to introduce two explicit eighth-algebraic-
order methods with phase lag of order 12 and 14 for the numerical solution
of the phase-shift problem of the one-dimensional Schrédinger equation. The
new methods are very simple because they are explicit. The phase shifts
calculated by these methods are more accurate than those given by Riehl et
al. (1974) and Hepburn and Le Roy (1978). We introduce a new error control
procedure, which is based on the property of the phase lag. Based on these
new methods, we introduce a new variable-step method for the solution of
(1). The numerical results given by this new variable-step method are better
than those of the best-known variable-step method of Raptis and Cash (1985).

2. PHASE-LAG ANALYSIS

We investigate the numerical integration of the problem

Y =fry), yrd =y Y=y )

To examine the stability properties of the methods for solving the initial-
value problem (2), Lambert and Watson (1976) introduced the scalar test
equation

L/ A

y' = —wly 3)
and the interval of periodicity. When we apply a symmetric two-step method
to the scalar test equation (3) we obtain a difference equation of the form

Ynst = 2Q()n + Yo-1 =0 C))

where s = wh, h is the step length, O(s) = B(s)/A(s), where B(s) and A(s)
are polynomials in s, and y, is the computed approximation to y(nh), n = 0,
1, 2, .... For explicit methods A(s) = 1.
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The characteristic equation associated with (4) is
2-20z+1=0 &)
We have the following definitions.

Definition 1 (Thomas, 1984). The method (4) with the characteristic
equation (5) is unconditionally stable if 1z;1 = 1 and 1z,| = 1 for all values
of wh.

Definition 2. Following Lambert and Watson (1976), we say that the
numerical method (4) has an interval of periodicity (0, H3) if for all s2 e
(0, H}), z; and z, satisfy

z=€% and 7z, = MO 6)
where 0(s) is a real function of s.

Definition 3 (Lambert and Watson, 1976). The method (4) is P-stable
if its interval of periodicity is (0, ).

Based on the above we have the following theorems [for the proofs see
Simos and Tougelidis (1996)].

Theorem 1. A method which has the characteristic equation (5) has an
interval of periodicity (0, Hj) if for all s* € (0, H3), 10(s)| < 1.

Theorem 2. About the method which has an interval of periodicity (0,
H?3) we can write

cos[0(s)] = Q(s), where s? € (0, H}) )

Definition 4 (van der Houwen and Sommeijer, 1987). For any method
corresponding to the characteristic equation (5) the quantity

t = s — cos[B(s)/A(s)] t3)

is called the dispersion or the phase error or the phase lag of the method. If
t = O(s**") as s — 0, the order of the phase lag is q.

Based on the above definition, Coleman (1989) arrived at the following
remark. If the order of dispersion is 2r, then we have

t = cs? + O(s7*) = cos(s) — O(s) = cos(s) — cos(s — ©)
— cs2r+2 + 0(s2r+4) (9)

where ¢ is the phase lag of the method.
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3. THE NEW EXPLICIT EIGHTH-ORDER METHODS
Consider the family of two-step formulas Mg(a,, i = 1(1)3) given by

Vst = 2¥n — Yu—1 T hzﬁl
Josr = F(Tnats Ynet) (10)

— h2 -
Yne1 = Zyn — Yn—1 + _15 (f;u-l + lof;l +.ﬁ1—l)

Fust = F sty Fos1) n
- |
et = 157 (oot + 1463, = 4Ty ) + 7o (=59t + 14387, + 25%,)
.};1+112 = frn+12s Yn+112) (12)

- 1
Yn-12 = 55 BYui1 + 20y, + 29y,-y) + (41fn+1 682f, — 271f,—))

4992
footr = fCam120 Fno12) (13)
Fne1 = 2¥n = Yn1 + g—; U:Pn+1 + 26, + fooy + 16U + fooi)]
Jarr = fTnets Fne) (14)
Suin = Tag (~259pm1 + 205, = 15yt = 379,22

K
1536

+ 761f, + 509f,-, + 27f,-2) (15)
};1+1/2 = f(rps 1 §n+1/2)

= 1 -

Ya-12 = Tog [37(y..+1 + Yo-2) + 27(yn + yn-1)1

-5-1—2[ s + fa-2) = 171(fy + fo-1)] (16)

]_rn—x/z = f(Fus 1125 Yn-112)
_ 1 "
Ynt1s = 3006 [605F,41 + 4070y, — 579Y,-1 — 160(Ype12 = Yu-102)]

h2

~ 19152 [113f,1 = 1390f, — 103f,—; + 1944(fosrn — fi-i)] (A7)
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Joria = f("n+1/4, Vn+1/4)

Yn-ia = 4096 (57951 — 4070y, — 605Y,-1 — 160(Yp+172 = Yn-12)]
2
+ 49"152 [103f,,, + 1390f, — 113f,—, + 1944(f,s1pp — fo-1)]  (18)

.};1—1/4 = f(ra=1145 Yn-110)
VP = yu = al®[Furt = 90f + Yaot = 200ns12 + Fno12)
+ 64(Fnr1a + V1))
fO=fr, 7, i=11)3 (19)

Then for n = 1 we derive the following two-parameter family Mg(a;, i =
1(1)3) of explicit methods of order eight:

h2
Vel = 20 F Yot = 3780 [47(for + fu-1) + 1328(fn+1/2 +fn 12)

- 1024(}':“/4 +};1—1/4) + 3078}-‘23)] (20)
The local truncation error (LTE) of the method is given by
—_ th (10) (8)
LTE = 95103590 [126945y{9 + (1512529200a; + 1010945)y®F,
— 1001952y0F,F,, — 636160y"F,F2 + O(h'?) 1)

where F, = (3f1dy),, F, = (dF/dr),, y? = (d* /dr2),,, ¥ = (d¥yldr®,,
YO = (doyldr®),, yO = (@%/dr®),, and y0® = (d"yldr ),

We apply this method to the scalar test equation (3). Setting s = wh,
we obtain the difference equation (4) and the corresponding characteristic
equation (5) with A(s) = 1 and

1, 1 1 1
= — = + — 4 _ 6 + 8
B =1=5 2% ~70" T 10330
900315a; + 3332
1132185600
52 — 89775a; — 108037800a,a; |,
1509580800 :
+ 19a3(5054400a,a, + 4200a,— 1
14909440
l71a2a3(1 - 4200(11) 16 _ 7695a1a2a3 18
1490944 ° 745472 °

10

)
s14
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For the proof of the following theorem see Simos and Tougelidis (1996).

Theorem 3. The phase lag of a symmetric two-step method with charac-
teristic equation (5) is the leading term in the expansion of

[cos(s) — Q(HVs*,  QO(s) =B(s)/A(s) (22)

Theorem 4. The family of methods My(a,, a,, a3) produces methods with
phase lag of order 12 and 14 for the values of a,, a,, and a3 given in Table
I. The intervals of periodicity of these methods are given in Table 1.

Proof. Considering (22), we have that
[cos(s) — Q()Vis?
¢ 900315a; + 3644

=g

1132185600
4 10 1612 — 2962575a; — 3565247400a,0,
49816166400
12 16 = 1777545a; + 7465689000a,a, + 89844234480002;a305

1394852659200

_ 4 L~ 2399685750a,a; + 10078680150000a,a,a;

20922789888000
¢ 1 — 66087345555000a,a,a; 23
6402373705728000

To have maximal phase-lag order it follows from (23) that we must
have the following system of equations:

900315a; + 3644
1612 — 2962575a; — 3565247400a,a; (24)
16 — 1777545a; + 7465689000a,a; + 8984423448000a,a,a;

Based on this system and on (23) we have Table L.

Table I. Characteristics of the New Methods

Method 1 Method 2
a, 0 —122158423/117312708240
a;. —3644/900315 —198943/211042260
a; —198943/211042260 —3644/900315
Phase lag 26 X 1078 s 2.4 X 107%s'0

Interval of periodicity (0, 12.9394) (0, 12.6756)
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To prove the property of nonempty interval of periodicity, we note first
that considering (5), it is clear that the roots z;, will be distinct, complex
conjugate, and each of modulus one for s* e (0, Hy) provided | Q(s)| < 1
for all s> e (0, Hy). Considering (5) and Theorem 1 and for a;, i = 1(1)3,
given in Table I, we have the intervals of periodicity mentioned in the
same table. m

4. NUMERICAL ILLUSTRATION

The methods developed in Section 3 can be applied in both the open-
channel problem and the bound-state problem. We investigate the open-
channel problem, i.e., the case E = k* > 0. .

In this case, in general, the potential function V(r) dies away much faster
than I(I + 1)/r?, so the latter is the predominant term. Then equation (1)
effectively reduces to y'(r) + (K — Il + 1)/r®)y(r) = O for large r. It is
well known that equation (1) has two linearly independent solutions krj(kr)
and krn/(kr), where jkr) and nfkr) are the spherical Bessel and Neumann
functions, respectively. Thus the asymptotic solution of (1) (i.e., for r — )
has the form

Wr) = Akrjkr) — Bkrnkr)
= ADf[sin(kr — lw/2) + tan §; cos(kr — In/2)] (25)

where §, is the real scattering phase shift of the Ith partial wave induced by
the potential V(r). The value of &, can be computed using the formula

_ Yr)S(r) — y(r)S(ry)
" W) Cry) = y(r)C(r)

where r, and r, are two distinct points in the asymptotic region, S(r) =
krjkr) and C(r) = —krnykr).

The term /m/2 in (25) is conventional. The reason for inserting it is
that, with this definition, all phase shifts vanish when the potential function
vanishes itself.

Based on (25) and (26), we have that the normalization factor D is given
by [for details see Simos (1990)]

tan §

(26)

D~ Y(ra)
krocos(dy) S(ra) + (= 1)’ sin(3)) C(r,)]

o))

In this section we present some numerical results to illustrate the perfor-
mance of our methods on a problem of practical interest. We consider the
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Table II. Phase Shifts Computed for &k = 10 and I = 0(10)50 Using the Methods of (a)
Riehl et al. (1974) and (b) Hepburn and Le Roy (1978) and the Present Method with Phase
Lag of Order (c) 12 and (d) 14

l Method a Method b Method ¢ Method d

0 -0.4311 —0.4310043 —0.431004370 —0.43100438189
10 0.3778 0.3779001 0.37789991 0.3779001041
20 0.4659 0.4659448 0.46594470 0.4659446969
30 0.0566 0.0566391 0.05663870 0.0566390356
40 0.0135 0.0135798 0.01357903 0.0135796944
50 0.0045 0.0044945 0.00449447 0.0044944736

numerical integration of the Schrédinger equation (1) in the well-known case
where the potential V(r) is the Lennard-Jones potential:

V(r) = 500(1/r'2 — 1/r%) 28)

In Table II we present the calculated phase shifts of the Schridinger
equation (1) for k = 10 and for / = 0(10)50 using the present methods, the
method of Riehl et al. (1974), and the method of Hepburn and Le Roy (1978).
From the results presented it is obvious that our new methods are much more
accurate than the other methods.

4.1. Error Estimation

For the integration of systems of initial-value problems, several methods
have been proposed for the estimation of the local truncation error (LTE)
[see, for example, Shampine et al. (1976) and references therein]. Here we
will introduce a new error control procedure.

In this paper we base our local error estimation technique on an embedded
pair of integration methods and on the fact that when the local phase-lag
error is of higher order, then the approximation of the solution for the problems
with a periodic solution is better.

We denote the solution obtained with higher order phase lag as yfi, | and
the solution obtained with lower order phase lag as yL, ;; we have the follow-
ing definition.

Definition 5. We define the local phase-lag error estimate in the lower
order solution yL, by the quantity

LPLE = |y = Yp| (29)

Under the assumption that 4 is sufficiently small, the local phase-lag error
in yH,, can be neglected compared with that in yk,,.
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We assume that the solution yt, , is obtained using the family of methods
with phase lag of order 14 described above and the solution yL,, is obtained
using the family of methods with phase lag of order 12 described above.

If the local phase-lag error of acc is requested and the step size of the
integration used for the nth step length is A, the estimated step size for the
(n + 1)th step which would give a local phase-lag error of acc must be

1/q
Parr = hn(L‘l‘fL“E) (30)

where q is the order of the local phase-lag error.

However, for ease of programming we have restricted all step changes
to halving and doubling. Thus, based on the procedure developed in Raptis
and Cash (1985) for the local phase-lag error, the step control procedure
which we actually used is

If LPLE < acc, h,., = 2h,
If 100acc > LPLE = acc, h,. = h, (€1))

If LPLE = 100acc, hy = % and repeat the step (32)

We note that the local phase-lag error estimate is in the lower order
solution yL, ;. However, if this error estimate is acceptable, i.e., less than acc,
we adopt the widely used procedure of performing local extrapolation. Thus,
although we are actually controlling an estimate of the local error in lower
order solution yL,,, it is the higher order solution y!,, which we actually
accept at each point.

We investigate now the computational cost of the application of the new
embedded method. The new embedded method is a variable-step method.
So, for comparison purposes we could apply only variable-step methods,
such as those developed by the Raptis and Cash (1985).

In Table III we present the phase shifts for k¥ = 10 and for acc =
107 using the variable-step algorithm described above and the variable-step
method presented in Raptis and Cash (1985). In all cases the embedded
variable-step method developed in this paper is more accurate and requires
less computation time.

All computations were carried out on a PC-AT 80486 using double-
precision arithmetic of 16-digit accuracy.

5. CONCLUSION

It is obvious that the new method and the new variable-step procedure
are more efficient than other well-known methods in the literature.



672 Simos

Table IIl.  Computed Phase Shifts and Real Time of Computation for Variable-Step
Method of Raptis and Cash (1985) and for Our New Embedded Variable-Step Method

Method of Reptis and Cash (1995) New embedded variable-step method

Real time of Real time of

l Phase shift computation Phase shift computation
0 -0.4311 0.330 —0.43100438189 0.045
1 1.0449 0.330 1.04500892188 0.045
2 0.7158 0.330 —0.71580734152 0.045
3 0.5687 0.340 0.56880699288 0.045
4 —1.3858 0.340 —1.38576629936 0.045
5 —0.2984 0.340 —0.29834219581 0.045
6 0.6867 0.340 0.68682979399 0.045
7 1.5662 0.340 1.56630306556 0.045
8 —0.8060 0.330 —0.80593975405 0.040
9 —0.1525 0.330 —0.15240773446 0.040
10 —0.3778 0.335 0.3779001041 0.040
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